Crystal structure of a novel viral protease with a serine/lysine catalytic dyad mechanism.

نویسندگان

  • Anat R Feldman
  • Jaeyong Lee
  • Bernard Delmas
  • Mark Paetzel
چکیده

The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structures of yellowtail ascites virus VP4 protease: trapping an internal cleavage site trans acyl-enzyme complex in a native Ser/Lys dyad active site.

Yellowtail ascites virus (YAV) is an aquabirnavirus that causes ascites in yellowtail, a fish often used in sushi. Segment A of the YAV genome codes for a polyprotein (pVP2-VP4-VP3), where processing by its own VP4 protease yields the capsid protein precursor pVP2, the ribonucleoprotein-forming VP3, and free VP4. VP4 protease utilizes the rarely observed serine-lysine catalytic dyad mechanism. ...

متن کامل

Novel dimer structure of a membrane-bound protease with a catalytic Ser–Lys dyad and its linkage to stomatin

Membrane-bound proteases are involved in various regulatory functions. A previous report indicates that the N-terminal region of PH1510 (1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii is a serine protease with a catalytic Ser-Lys dyad (Ser97 and Lys138), and specifically cleaves the C-terminal hydrophobic region of the p-stomatin PH1511. According to the crystal structure of ...

متن کامل

Expression, purification and crystallization of VP4 protease from Tellina virus 1.

Tellina virus 1 is an aquabirnavirus that was isolated from the sand-dwelling marine bivalve mollusc Tellina tenuis. The self-encoded protease viral protein 4 (VP4) processes its own polyprotein to yield the individual proteins VP2 and VP3 that are required for viral assembly. VP4 protease utilizes a serine-lysine catalytic dyad in its mechanism. A full-length VP4 construct was overexpressed in...

متن کامل

Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism.

Escherichia coli signal peptidase (SPase) and E. coli UmuD protease are members of an evolutionary clan of serine proteases that apparently utilize a serine-lysine catalytic dyad mechanism. Recently, the crystallographic structure of a SPase inhibitor complex was solved elucidating the catalytic residues and the substrate binding subsites. Here we show a detailed comparison of the E. coli SPase...

متن کامل

Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites.

The polyprotein of infectious bursal disease virus (IBDV), an avian birnavirus, is processed by the viral protease, VP4. Previous data obtained on the VP4 of infectious pancreatic necrosis virus (IPNV), a fish birnavirus, and comparative sequence analysis between IBDV and IPNV suggest that VP4 is an unusual eukaryotic serine protease that shares properties with prokaryotic leader peptidases and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 358 5  شماره 

صفحات  -

تاریخ انتشار 2006